Vaughansingh7127

From DigitalMaine Transcription Project
Jump to: navigation, search

This assay can be adapted to other infection systems, time points and cell types as needed. Together, we examined via an ELISA-based antibody array a phosphoproteomic screen to search for potential phosphorylated proteins that might influence HCMV infection.Human cytomegalovirus (HCMV) is a large double-stranded DNA virus and member of the β-herpesvirus family. HCMV is ubiquitous in the human population and causes lifelong infections. HCMV infection is associated with high morbidity and mortality in immunocompromised individuals and the virus is a major cause of virus-mediated congenital disease. There have been a number of HCMV entry receptors identified that use one of two viral receptor binding complexes, including the gH/gL/gO complex and the pentamer made up of gH/gL/UL128/UL130/UL131a. Cytomegaloviruses (CMVs) are typically host-restricted requiring the use of species-specific modeling and culture conditions. We use rat CMV (RCMV) to study CMV-accelerated vascular disease and chronic allograft rejection. RCMV encodes homologous versions of the entry complex proteins but their incorporation and copy number per virion are still unknown. In this methods article, we describe a novel approach of HiBiT tagging viral proteins in order to detect and quantify protein incorporation into particles. This method is independent of protein-specific antibodies and can be standardized using a commercially available HiBiT protein standard. Using bacterial artificial chromosome (BAC) recombineering, we have constructed two individual viruses containing a HiBiT tag fused to the C'-terminus of either the UL128 homolog (R129) or the UL130 homolog (R131). Viruses containing these mutations were rescued, purified and analyzed. Our data demonstrate that R129 and R131 are both incorporated into RCMV virions at equimolar ratios relative to genome copy number, supporting this antibody-free approach for quantifying viral protein incorporation and its application toward the identification of domains required for incorporation.Human cytomegalovirus (HCMV) entry into host cells is a complex process involving interactions between an array of viral glycoproteins with multiple host cell surface receptors. A significant amount of research has been devoted toward identifying these glycoprotein and cellular receptor interactions as the broad cellular tropism of HCMV suggests a highly regulated yet adaptable process that controls viral binding and penetration. However, deciphering the initial binding and cellular receptor activation events by viral glycoproteins remains challenging. The relatively low abundance of receptors and/or interactions with glycoproteins during viral entry, the hydrophobicity of membrane receptors, and the rapid degradation and recycling of activated receptors have complicated the analysis of HCMV entry and the cellular signaling pathways initiated by HCMV engagement to the host membrane. Here, we describe the different methodologies used in our laboratory and others to analyze the interactions between HCMV glycoproteins and host cellular receptors during the entry stage of the viral life cycle.All of the cytomegaloviruses discovered to date encode two or more genes with significant homology to G protein-coupled receptors (GPCRs). The functions of these cytomegalovirus GPCRs continue to be actively studied and it is clear that they exhibit numerous interesting functions in vitro and in vivo. In this chapter, we review the various methodologies that can be used to examine biochemical aspects of viral GPCR signaling in vitro, as well as examine the biological activity of these viral GPCRs in vitro and in vivo in virus infected cells using recombinant cytomegaloviruses.To fully understand the function of cytomegalovirus (CMV) genes, it is imperative that they are studied in the context of infection. Therefore, the targeted deletion of individual viral genes and the comparison of these loss-of-function viral mutants to the wild-type virus allow for the identification of the relevance and role for a particular gene in the viral replication cycle. Targeted CMV mutagenesis has made huge advances over the past 20 years. The cloning of CMV genomes into Escherichia coli as bacterial artificial chromosomes (BAC) allows for not only quick and efficient deletion of viral genomic regions, individual genes, or single-nucleotide exchanges in the viral genome but also the insertion of heterologous genetic sequences for gain-of-function approaches. The conceptual advantage of this strategy is that it overcomes the restrictions of recombinant technologies in cell culture systems. Namely, recombination in infected cells occurs only in a few clones, and their selection is not possible if the targeted genes are relevant for virus replication and are not able to compete for growth against the unrecombined parental viruses. Selleck ex229 On the other hand, BAC mutagenesis enables the selection for antibiotic resistance in E. coli, providing selective growth advantage to the recombined genomes and thus clonal selection of viruses with even extremely poor fitness. Here we describe the methods used for the generation of a CMV BAC, targeted mutagenesis of BAC clones, and transfection of human cells with CMV BAC DNA in order to reconstitute the viral infection process.Human fibroblasts represent the most extensively used cell type for the investigation of lytic human cytomegalovirus (HCMV) replication. However, analyzing the function of specific proteins during infection can be challenging since primary cells are difficult to transfect. An alternative approach is the use of lentiviral transduction with vectors for stable or inducible shRNA expression. This approach provides a versatile tool to study the role of host cell factors during HCMV infection. The essential steps to achieve an efficient target protein knockdown are shRNA design, cloning, generation of transgenic lentiviral particles, and, finally, transduction of the cells. However, these steps are highly dependent on the selected vector system. Here we focus on two different vector systems and describe how to successfully generate stable and inducible knockdown fibroblasts. Additionally, we demonstrate different methods to validate the knockdown of the target protein.