Whiteheadhansen1290
Studies have shown that lead exposure affected the immune function, but few studies have examined the relationships between in utero lead exposure, a sensitive period that is important for immune development, and later immune responses. To investigate the effects of prenatal and childhood lead exposure on the preschool-aged children's immune responses, a prospective birth cohort study was established in Wuhan, China, in which lead concentrations were analyzed in maternal urine during the third trimester and in plasma samples from children aged about 3 years. We assessed immune responses by measuring immune cytokines in the children's plasma (n = 326) and peripheral blood T lymphocyte subsets (n = 394) at 3 years of age. Each unit increase in maternal urinary lead concentration (μg/g creatinine) was associated with reduced IL-10 (β = -5.93%, 95%CI -11.82%, -0.03%) and reduced IL-4 levels (β = -5.62%, 95%CI -10.44%, -0.80%). Lead in children's plasma (μg/L) was associated with significant increase in TNF-α (β = 10.78%, 95%CI 3.97%, 17.59%). No statistically significant relationship of childhood lead exposure with T lymphocyte subsets was observed. The study suggested prenatal and childhood lead exposure was associated with changes in preschool children's plasma cytokine levels.Tetrachlorobisphenol A (TCBPA) is used as flame retardant, and it has been widely detected in the environmental and human samples. TCBPA is an endocrine disrupting chemical, but its effects on the immune system remains poorly understood. Here the effects of TCBPA on immune system were studied using combined in vivo and in vitro assays. Results showed that TCBPA could suppress the immune response in BALB/c mice via reducing the ratio of CD3+ T lymphocytes to regulatory T cells. Moreover, TCBPA exposure significantly induced the increasing secretion of four pro-inflammatory cytokines (IL-2, IL-12, IFN-γ, and TNF-α) and four anti-inflammatory cytokines (IL-4, IL-5, IL-10, GM-CSF) in mice serum. Interestingly, uterine edema was observed in over 80% TCBPA-treated mice after 14- day exposure. TCBPA was detected in 18.6% serum samples of 150 female volunteers in this study. Therefore, our findings provided evidence that TCBPA exposure may cause adverse outcomes on immune system and uterus, suggesting that environmental exposure of TCBPA, as well as its adverse effects on human health should be of concern.Phthalates (PAEs), bisphenol A (BPA), and oestrogenic compounds have become major concerns due to their endocrine-disrupting effect. However, few studies related to the occurrence of PAEs, BPA, and oestrogen in food and compost from different growth age livestock have been conducted. In this study, faeces, urine and food samples were collected from a typical livestock (cow) and a special livestock (pigeon) from concentrated animal feeding operations (CAFOs). AZD9291 The daily total oestrogen excretion of a single cow ranged from 192 μg/day to 671 μg/day, which was significantly higher than that of a single pigeon (0-0.01 μg/day). Conjugated oestrogens represented 22.0-46.0% of the total oestrogens excreted from cow faeces and 80.7-91.8% of those from cow urine, indicating that the form of the excreted oestrogens depends on the livestock species and type of excrement. BPA was all detected in all livestock manure and food, and the concentration in pigeon was 9.2-40.2 ng/g and 23.1 ng/g respectively, while that in cattle was 50.5-72.0 ng/g and 41.1 ng/g respectively. The results indicated that the food is significant sources of BPA entering the process of cow and pigeon breeding. Diethyl phthalate (DEP) was detected at high frequency in pigeon faeces samples, suggesting that pigeons were highly exposed to these plasticisers. The total oestradiol equivalent quantity (EEQt) of livestock origin in aquatic environments was estimated to be 2.99 ng/L, which was higher than the baseline hazard value (1 ng/L) (Xu et al., 2018). The study provides data on the emissions and sources of PAEs, BPA, and oestrogenic compounds from different livestock in CAFOs and demonstrates that food is a significant source of BPA entering livestock.Methylmercury (MeHg) exposure during pregnancy can lead to adverse outcomes, including miscarriage and intrauterine growth retardation. In this study, MeHg cytotoxicity and its mechanisms in HTR-8/SVneo cells were investigated. MeHg inhibited HTR-8/SVneo cell viability and severely disrupted the cellular submicrostructure, showing a time-dose effect relationship. After MeHg treatment, the reactive oxygen species levels, malondialdehyde content, and superoxide dismutase (SOD) and catalase activities in the HTR-8/SVneo cells increased significantly with increased MeHg concentration (P less then 0.05). Similarly, MeHg also induced HTR-8/SVneo cell apoptosis in a dose-dependent manner. The proportion of cells in G1 phase decreased with increasing MeHg concentration, while that in the S and G2/M phases gradually increased. Moreover, cell migration and invasion capacities gradually decreased with increasing MeHg concentration, showing a significant difference between the MeHg-treated and control groups. Genes related to oxidative stress (HSPA6, HSPA1A, Nrf2, SOD1, HO-1, NQO1, OSGIN1, and gPX1), cell cycle (P21 and CDC25A), apoptosis (CYCS and AIFM2), and migration and invasion (CXCL8, CXCL3, CLU, IL24, COL3A1, MAPT, and ITGA7) were differentially expressed in the MeHg-treated group, indicating MeHg toxicity and mechanism of action. This study will provide insights into the prevention and treatment of pregnancy-related diseases caused by MeHg.The present study investigated the stability and efficacy of a biosurfactant produced by Klebsiella sp. KOD36 under extreme conditions and its potential for enhancing the solubilization and degradation of phenanthrene in various environmental matrices. Klebsiella sp. KOD36 produced a mono-rhamnolipids biosurfactant with a low critical micelle concentration (CMC) value. The biosurfactant was stable under extreme conditions (60 °C, pH 10 and 10% salinity) and could lower surface tension by 30% and maintained an emulsification index of > 40%. The emulsion index was also higher (17-43%) in the presence of petroleum hydrocarbons compared to synthetic surfactant Triton X-100. Investigation on phenanthrene degradation in three different environmental matrices (aqueous, soil-slurry and soil) confirmed that the biosurfactant enhanced the solubilization and biodegradation of phenanthrene in all matrices. The high functional stability and performance of the biosurfactant under extreme conditions on phenanthrene degradation show the great potential of the biosurfactant for remediation applications under harsh environmental conditions.